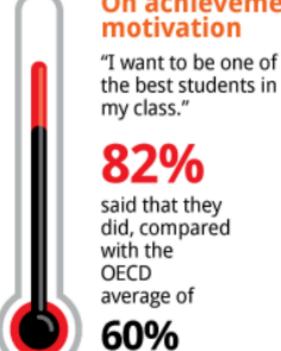


Nguyen Le Hoang, Dinh Hoang Nam, Tan Yong Xiang

Integrating Al to assess Students Well-being


Problems

- Hard to recognise stress for the students
- Hard to evaluate students' stress level
- Many signs of stress are quantitative, it is harder to recognise the severity of stress

How Singapore students responded

On test anxiety "I feel very anxious even if I am well prepared for a test." 76% agreed or strongly

76%
agreed or strongly agreed with the statement compared with the OECD average of

On achievement On being bullied During the past 12 mon

During the past 12 months, how often have you had the following experiences in school?

18.3%

said they were made fun of at least a few times a month, compared with the OECD average of

10.9%

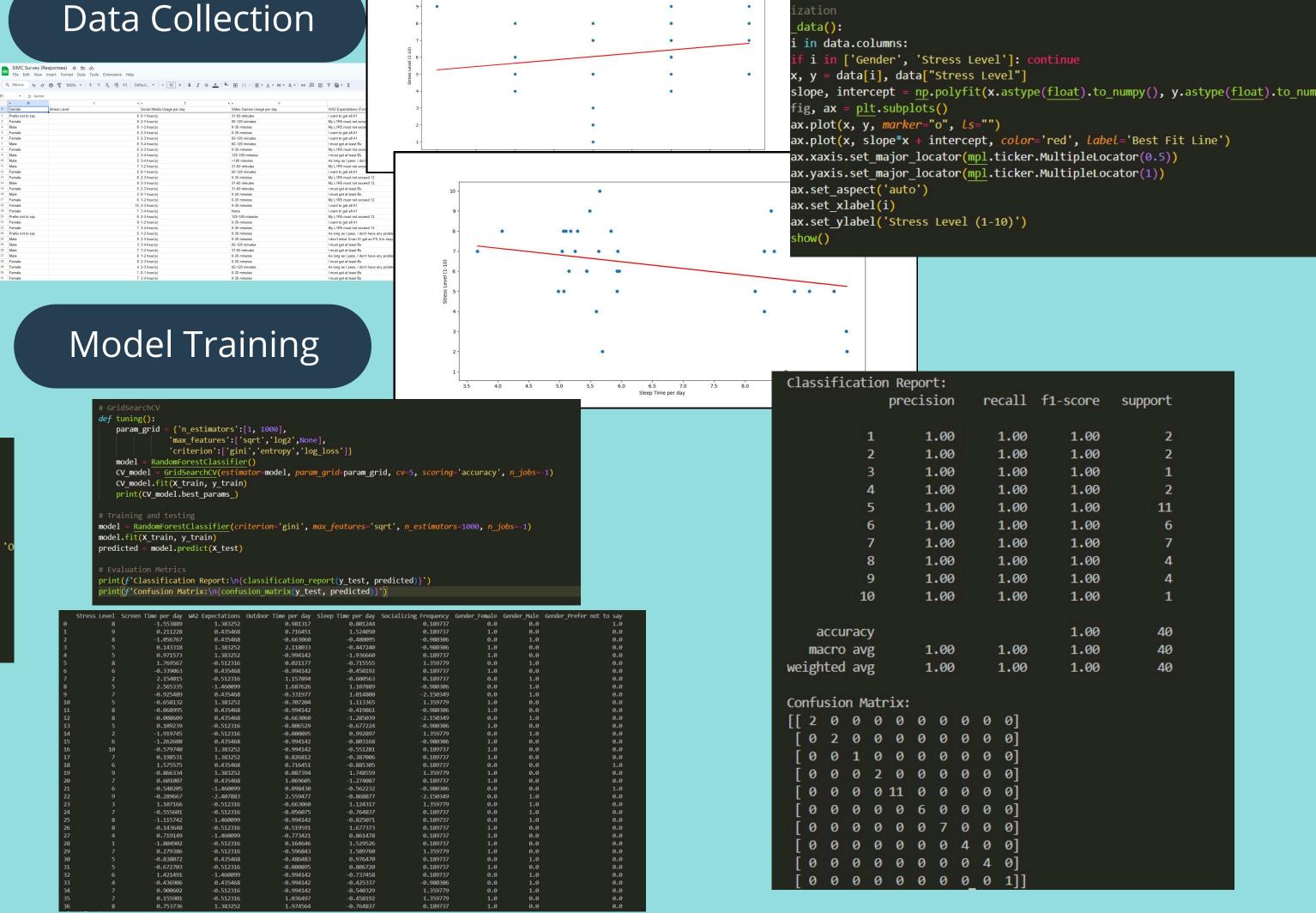
"Other students left me out of things on purpose."

11.9%

said they were left out on purpose, compared with the OECD average of

7.2%

Source: PROGRAMME FOR INTERNATIONAL STUDENT ASSESSMENT STUDENTS' WELL-BEING STUDY 2015


Methodology

Overview:

- Collect data from students
- Pre-processing data
- Split data
- Create a model to predict the stress level based on given features using Random Forest Classifier with GridSearchCV
- Train the model

Solutions

- Our aim: Using Al to identify student's well-being throughout their academic year based on their daily schedule
- Prompt: Build an AI model that can predict the student's stress level based on the 4 features we gathered: Sleeping time, Gaming time, Outdoor Activities time and Social Media Usage

Preprocessing

```
# Preprocessing
encoder = OneHotEncoder(sparse_output=False)
one_hot_encoded = encoder.fit_transform(data[['Gender']])
one_hot_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out(['Gender']))
data = pd.concat([data, one_hot_df], axis=1)
data = data.drop(['Gender'], axis=1)

columns_to_scale = ['Social Media Usage per day', 'Video Games Usage per day', 'WA2 Expectations',
data[columns_to_scale] = StandardScaler().fit_transform(data[columns_to_scale])

pca_columns = ['Social Media Usage per day', 'Video Games Usage per day']
pca = PCA(n_components=1).fit_transform(data[pca_columns])
pca_df = pd.DataFrame(pca, columns=['Screen Time per day'])
data = pd.concat([data['Stress Level'], pca_df, data.loc[:, 'WA2 Expectations':]], axis=1)
print(data)
```

Split data

Reflection

- The model was trained pretty well according to expectation, when it is able to predict the stress level based on given factor
- What we can improve is the breadth of the data set, that is we should collect more responses so that resembling artificial sample is not nescessary.
- What we learn from the project is to create a model that can perform our prompt and we were able to somehow train it!

References

- SIMC Workshop Resources
- Scikit-learn Resources
- The Strait Times, "Study says Singapore students suffer from high levels of anxiety"